High Performance Discovery In Time Series -  New York University

High Performance Discovery In Time Series

Techniques and Case Studies
Buch | Softcover
190 Seiten
2011 | Softcover reprint of the original 1st ed. 2004
Springer-Verlag New York Inc.
978-1-4419-1842-0 (ISBN)
106,99 inkl. MwSt
Overview and Goals Data arriving in time order (a data stream) arises in fields ranging from physics to finance to medicine to music, just to name a few. Often the data comes from sensors (in physics and medicine for example) whose data rates continue to improve dramati­ cally as sensor technology improves. Further, the number of sensors is increasing, so correlating data between sensors becomes ever more critical in orderto distill knowl­ edge from the data. On-line response is desirable in many applications (e.g., to aim a telescope at a burst of activity in a galaxy or to perform magnetic resonance-based real-time surgery). These factors - data size, bursts, correlation, and fast response­ motivate this book. Our goal is to help you design fast, scalable algorithms for the analysis of single or multiple time series. Not only will you find useful techniques and systems built from simple primi­ tives, but creative readers will find many other applications of these primitives and may see how to create new ones of their own. Our goal, then, is to help research mathematicians and computer scientists find new algorithms and to help working scientists and financial mathematicians design better, faster software.

1 Time Series Preliminaries.- 2 Data Reduction and Transformation Techniques.- 3 Indexing Methods.- 4 Flexible Similarity Search.- 5 StatStream.- 6 Query by Humming.- 7 Elastic Burst Detection.- 8 A Call to Exploration.- A Answers to the Questions.- A.2 Chapter 2.- A.3 Chapter 3.- A.4 Chapter 4.- A.5 Chapter 5.- A.6 Chapter 6.- A.7 Chapter 7.- References.

Reihe/Serie Monographs in Computer Science
Zusatzinfo 45 Illustrations, black and white; XV, 190 p. 45 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-4419-1842-6 / 1441918426
ISBN-13 978-1-4419-1842-0 / 9781441918420
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90