Geometric Inequalities - Yurii D. Burago, Viktor A. Zalgaller

Geometric Inequalities

Buch | Softcover
XIV, 334 Seiten
2010 | 1. Softcover reprint of the original 1st ed. 1988
Springer Berlin (Verlag)
978-3-642-05724-3 (ISBN)
160,49 inkl. MwSt
A 1988 classic, covering Two-dimensional Surfaces; Domains on the Plane and on Surfaces; Brunn-Minkowski Inequality and Classical Isoperimetric Inequality; Isoperimetric Inequalities for Various Definitions of Area; and Inequalities Involving Mean Curvature.
Geometrie inequalities have a wide range of applieations-within geometry itself as weIl as beyond its limits. The theory of funetions of a eomplex variable, the ealculus of variations in the large, embedding theorems of funetion spaees, a priori estimates for solutions of differential equations yield many sueh examples. We have attempted to piek out the most general inequalities and, in model eases, we exhibit effeetive geometrie eonstruetions and the means of proving sueh inequalities. A substantial part of this book deals with isoperimetrie inequalities and their generalizations, but, for all their variety, they do not exhaust the eontents ofthe book. The objeets under eonsideration, as a rule, are quite general. They are eurves, surfaees and other manifolds, embedded in an underlying space or supplied with an intrinsie metrie. Geometrie inequalities, used for different purposes, appear in different eontexts-surrounded by a variety ofteehnieal maehinery, with diverse require ments for the objeets under study. Therefore the methods of proof will differ not only from ehapter to ehapter, but even within individual seetions. An inspeetion of monographs on algebraie and funetional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type.

1. Two-Dimensional Surfaces.- 2. The Brunn-Minkowski Inequality and the Classical Isoperimetric Inequality.- 3. Isoperimetric Inequalities for Various Definitions of Area.- 4. Mixed Volumes.- 5. Immersions in ?n.- 6. Riemannian Manifolds.- Author Index.

Erscheint lt. Verlag 1.12.2010
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Übersetzer A.B. Sossinsky
Zusatzinfo XIV, 334 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 530 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Curvature • differential equation • linear optimization • manifold • mean curvature
ISBN-10 3-642-05724-1 / 3642057241
ISBN-13 978-3-642-05724-3 / 9783642057243
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95