Harmonic Analysis on the Heisenberg Group

Sundaram Thangavelu (Herausgeber)

Buch | Hardcover
195 Seiten
1998
Birkhauser Boston Inc (Verlag)
978-0-8176-4050-7 (ISBN)

Lese- und Medienproben

Harmonic Analysis on the Heisenberg Group -
128,39 inkl. MwSt
The Heisenberg group plays an important role in several branches of mathematics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis.
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu's exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.

1 The Group Fourier Transform.- 1.1 The Heisenberg group.- 1.2 The Schrödinger representations.- 1.3 The Fourier and Weyl transforms.- 1.4 Hermite and special Hermite functions.- 1.5 Paley—Wiener theorems for the Fourier transform.- 1.6 An uncertainty principle on the Heisenberg group.- 1.7 Notes and references.- 2 Analysis of the Sublaplacian.- 2.1 Spectral theory of the sublaplacian.- 2.2 Spectral decomposition for Lp functions.- 2.3 Restriction theorems for the spectral projections.- 2.4 A Paley-Wiener theorem for the spectral projections.- 2.5 Bochner-Riesz means for the sublaplacian.- 2.6 A multiplier theorem for the Fourier transform.- 2.7 Notes and references.- 3 Group Algebras and Applications.- 3.1 The Heisenberg motion group.- 3.2 Gelfand pairs, spherical functions and group algebras.- 3.3 An algebra of radial measures.- 3.4 Analogues of Wiener-Tauberian theorem.- 3.5 Spherical means on the Heisenberg group.- 3.6 A maximal theorem for spherical means.- 3.7 Notes and references.- 4 The Reduced Heisenberg Group.- 4.1 The reduced Heisenberg group.- 4.2 A Wiener-Tauberian theorem for Lp functions.- 4.3 A maximal theorem for spherical means.- 4.4 Mean periodic functions on phase space.- 4.5 Notes and references.

Reihe/Serie Progress in Mathematics ; 159
Zusatzinfo XII, 195 p.
Verlagsort Secaucus
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8176-4050-9 / 0817640509
ISBN-13 978-0-8176-4050-7 / 9780817640507
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich