Advances in Knowledge Discovery and Data Mining, Part II
Springer Berlin (Verlag)
978-3-642-13671-9 (ISBN)
Session 4B. Dimensionality Reduction/Parallelism.- Subclass-Oriented Dimension Reduction with Constraint Transformation and Manifold Regularization.- Distributed Knowledge Discovery with Non Linear Dimensionality Reduction.- DPSP: Distributed Progressive Sequential Pattern Mining on the Cloud.- An Approach for Fast Hierarchical Agglomerative Clustering Using Graphics Processors with CUDA.- Session 5A. Novel Applications.- Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data.- Combining Support Vector Machines and the t-statistic for Gene Selection in DNA Microarray Data Analysis.- Satrap: Data and Network Heterogeneity Aware P2P Data-Mining.- Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs).- Relevant Gene Selection Using Normalized Cut Clustering with Maximal Compression Similarity Measure.- Session 5B. Feature Selection/Visualization.- A Novel Prototype Reduction Method for the K-Nearest Neighbor Algorithm with K???1.- Generalized Two-Dimensional FLD Method for Feature Extraction: An Application to Face Recognition.- Learning Gradients with Gaussian Processes.- Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz.- Session 6A. Graph Mining.- Subgraph Mining on Directed and Weighted Graphs.- Finding Itemset-Sharing Patterns in a Large Itemset-Associated Graph.- A Framework for SQL-Based Mining of Large Graphs on Relational Databases.- Fast Discovery of Reliable k-terminal Subgraphs.- GTRACE2: Improving Performance Using Labeled Union Graphs.- Session 6B. Clustering II.- Orthogonal Nonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering.- Rule Synthesizing from Multiple Related Databases.-Fast Orthogonal Nonnegative Matrix Tri-Factorization for Simultaneous Clustering.- Hierarchical Web-Page Clustering via In-Page and Cross-Page Link Structures.- Mining Numbers in Text Using Suffix Arrays and Clustering Based on Dirichlet Process Mixture Models.- Session 7A. Opinion/Sentiment Mining.- Opinion-Based Imprecise Query Answering.- Blog Opinion Retrieval Based on Topic-Opinion Mixture Model.- Feature Subsumption for Sentiment Classification in Multiple Languages.- Decentralisation of ScoreFinder: A Framework for Credibility Management on User-Generated Contents.- Classification and Pattern Discovery of Mood in Weblogs.- Capture of Evidence for Summarization: An Application of Enhanced Subjective Logic.- Session 7B. Stream Mining.- Fast Perceptron Decision Tree Learning from Evolving Data Streams.- Classification and Novel Class Detection in Data Streams with Active Mining.- Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification.- Summarizing Multidimensional Data Streams: A Hierarchy-Graph-Based Approach.- Efficient Trade-Off between Speed Processing and Accuracy in Summarizing Data Streams.- Subsequence Matching of Stream Synopses under the Time Warping Distance.- Session 8A. Similarity and Kernels.- Normalized Kernels as Similarity Indices.- Adaptive Matching Based Kernels for Labelled Graphs.- A New Framework for Dissimilarity and Similarity Learning.- Semantic-Distance Based Clustering for XML Keyword Search.- Session 8B. Graph Analysis.- oddball: Spotting Anomalies in Weighted Graphs.- Robust Outlier Detection Using Commute Time and Eigenspace Embedding.- EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs.- BASSET: Scalable Gateway Finder in Large Graphs.- Session 8C. Classification II.- Ensemble Learning Based on Multi-Task Class Labels.- Supervised Learning with Minimal Effort.- Generating Diverse Ensembles to Counter the Problem of Class Imbalance.- Relationship between Diversity and Correlation in Multi-Classifier Systems.- Compact Margin Machine.
Erscheint lt. Verlag | 1.6.2010 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | 520 p. 161 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Gewicht | 825 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Schlagworte | Algorithm analysis and problem complexity • Bioinformatics • classification • Clustering • Data Analysis • Data Mining • Distributed data mining • fractal representation • graph analysis • Knowledge Discovery |
ISBN-10 | 3-642-13671-0 / 3642136710 |
ISBN-13 | 978-3-642-13671-9 / 9783642136719 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich