Digital Nets and Sequences - Josef Dick, Friedrich Pillichshammer

Digital Nets and Sequences

Discrepancy Theory and Quasi–Monte Carlo Integration
Buch | Hardcover
618 Seiten
2010
Cambridge University Press (Verlag)
978-0-521-19159-3 (ISBN)
109,95 inkl. MwSt
Students will find this book indispensable as it introduces high-dimensional numerical integration and discrepancy theory from scratch with hundreds of examples and exercises. It also includes the newest results on quasi–Monte Carlo, digital nets and sequences, and discrepancy, making it an invaluable reference for researchers.
Indispensable for students, invaluable for researchers, this comprehensive treatment of contemporary quasi–Monte Carlo methods, digital nets and sequences, and discrepancy theory starts from scratch with detailed explanations of the basic concepts and then advances to current methods used in research. As deterministic versions of the Monte Carlo method, quasi–Monte Carlo rules have increased in popularity, with many fruitful applications in mathematical practice. These rules require nodes with good uniform distribution properties, and digital nets and sequences in the sense of Niederreiter are known to be excellent candidates. Besides the classical theory, the book contains chapters on reproducing kernel Hilbert spaces and weighted integration, duality theory for digital nets, polynomial lattice rules, the newest constructions by Niederreiter and Xing and many more. The authors present an accessible introduction to the subject based mainly on material taught in undergraduate courses with numerous examples, exercises and illustrations.

Josef Dick is a lecturer in the School of Mathematics and Statistics at the University of New South Wales, Australia. Friedrich Pillichshammer is a Professor in the Institute for Financial Mathematics at the University of Linz, Austria.

Preface; Notation; 1. Introduction; 2. Quasi–Monte Carlo integration, discrepancy and reproducing kernel Hilbert spaces; 3. Geometric discrepancy; 4. Nets and sequences; 5. Discrepancy estimates and average type results; 6. Connections to other discrete objects; 7. Duality Theory; 8. Special constructions of digital nets and sequences; 9. Propagation rules for digital nets; 10. Polynomial lattice point sets; 11. Cyclic digital nets and hyperplane nets; 12. Multivariate integration in weighted Sobolev spaces; 13. Randomisation of digital nets; 14. The decay of the Walsh coefficients of smooth functions; 15. Arbitrarily high order of convergence of the worst-case error; 16. Explicit constructions of point sets with best possible order of L2-discrepancy; Appendix A. Walsh functions; Appendix B. Algebraic function fields; References; Index.

Erscheint lt. Verlag 9.9.2010
Zusatzinfo Worked examples or Exercises; 25 Halftones, black and white; 20 Line drawings, black and white
Verlagsort Cambridge
Sprache englisch
Maße 180 x 254 mm
Gewicht 1200 g
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Analysis
ISBN-10 0-521-19159-9 / 0521191599
ISBN-13 978-0-521-19159-3 / 9780521191593
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99