Contents

1	Stochastic Optimization Methods				
	1.1	Introduction			
	1.2	Deterministic Substitute Problems: Basic Formulation	3		
		1.2.1 Minimum or Bounded Expected Costs	4		
		1.2.2 Minimum or Bounded Maximum Costs (Worst Case)	6		
	1.3	Optimal Decision/Design Problems with Random Parameters			
	1.4	Deterministic Substitute Problems in Optimal Decision/Design	12		
		1.4.1 Expected Cost or Loss Functions	13		
	1.5	Basic Properties of Deterministic Substitute Problems			
	1.6	Approximations of Deterministic Substitute Problems			
		in Optimal Design/Decision	18		
		1.6.1 Approximation of the Loss Function	18		
		1.6.2 Approximation of State (Performance) Functions	21		
		1.6.3 Taylor Expansion Methods	24		
	1.7	Approximation of Probabilities: Probability Inequalities	28		
		1.7.1 Bonferroni-Type Inequalities	28		
		1.7.2 Tschebyscheff-Type Inequalities	30		
2	Optir	nal Control Under Stochastic Uncertainty	37		
	2.1	Stochastic Control Systems	37		
		2.1.1 Random Differential and Integral Equations	39		
		2.1.2 Objective Function	45		
	2.2	Control Laws	49		
	2.3	Convex Approximation by Inner Linearization			
	2.4	Computation of Directional Derivatives			
	2.5	Canonical (Hamiltonian) System of Differential			
		Equations/Two-Point Boundary Value Problem	67		
	2.6	Stationary Controls			
	2.7	Canonical (Hamiltonian) System of Differential			

xxi

	2.8	Computation of Expectations by Means of Taylor Expansions		
		2.8.1 Complete Taylor Expansion	74 75	
			15	
3	Stoch	astic Optimal Open-Loop Feedback Control	79	
	3.1	Dynamic Structural Systems Under Stochastic Uncertainty	79	
		3.1.1 Stochastic Optimal Structural Control: Active Control	/9	
		3.1.2 Stochastic Optimal Design of Regulators	81	
		3.1.3 Robust (Optimal) Open-Loop Feedback Control	82	
		3.1.4 Stochastic Optimal Open-Loop Feedback Control	82	
	3.2	Expected Total Cost Function	84	
	3.3 Open-Loop Control Problem on the Remaining Time			
	2.4	Interval $[t_b, t_f]$	85	
	3.4	The Stochastic Hamiltonian of (3./a–d)	82	
		3.4.1 Expected Hamiltonian (with Respect to the Time	0.0	
		Interval $[t_b, t_f]$ and Information \mathfrak{A}_{t_b})	86	
	2 <i>ī</i>	3.4.2 <i>H</i> -Minimal Control on $[t_b, t_f]$	86	
	3.5	Canonical (Hamiltonian) System	8/	
	3.6	Minimum Energy Control	88	
		3.6.1 Endpoint Control	89	
		3.6.2 Endpoint Control with Different Cost Functions	93	
	2.7	3.6.3 Weighted Quadratic Terminal Costs	95	
	3.7	Nonzero Costs for Displacements	98	
	2.0	3.7.1 Quadratic Control and Terminal Costs	100	
	3.8 Stochastic Weight Matrix $Q = Q(t, \omega)$		103	
	3.9 Uniformly Bounded Sets of Controls $D_t, t_0 \le t \le t_f$ 3.10 Approximate Solution of the Two-Point Boundary			
Value Problem (BVP)		Value Problem (BVP)	112	
	3.11	Example	115	
4	Adap	tive Optimal Stochastic Trajectory Planning		
	and C	Control (AOSTPC)	119	
	4.1	Introduction	119	
	4.2	Optimal Trajectory Planning for Robots	121	
	4.3	Problem Transformation	124	
		4.3.1 Transformation of the Dynamic Equation	126	
		4.3.2 Transformation of the Control Constraints	127	
		4.3.3 Transformation of the State Constraints	128	
		4.3.4 Transformation of the Objective Function	129	
	4.4	OSTP: Optimal Stochastic Trajectory Planning	129	
		4.4.1 Computational Aspects	137	
		4.4.2 Optimal Reference Trajectory, Optimal		
		Feedforward Control	141	

	4.5	AOST	P: Adaptive Optimal Stochastic Trajectory Planning	142		
		4.5.1	(OSTP)-Transformation	146		
		4.5.2	The Reference Variational Problem	148		
		4.5.3	Numerical Solutions of (OSTP) in Real-Time	150		
	4.6	Online	e Control Corrections: PD-Controller	157		
		4.6.1	Basic Properties of the Embedding $q(t, \epsilon)$	158		
		4.6.2	The 1st Order Differential dq	161		
		4.6.3	The 2nd Order Differential d^2q	168		
		4.6.4	Third and Higher Order Differentials	172		
	4.7	Online	e Control Corrections: PID Controllers	173		
		4.7.1	Basic Properties of the Embedding $q(t, \varepsilon)$	176		
		4.7.2	Taylor Expansion with Respect to ε	177		
		4.7.3	The 1st Order Differential dq	178		
5	Optir	nal Des	sign of Regulators	195		
	5.1	Tracki	ng Error	197		
		5.1.1	Optimal PD-Regulator	198		
	5.2	Param	etric Regulator Models	200		
		5.2.1	Linear Regulator	200		
		5.2.2	Explicit Representation of Polynomial Regulators	201		
		5.2.3	Remarks to the Linear Regulator	202		
	5.3	Comp	utation of the Expected Total Costs of the Optimal			
		Regul	ator Design	203		
		5.3.1	Computation of Conditional Expectations			
			by Taylor Expansion	204		
		5.3.2	Quadratic Cost Functions	206		
	5.4	Appro	eximation of the Stochastic Regulator Optimization			
	Problem					
		5.4.1	Approximation of the Expected Costs:			
			Expansions of 1st Order	209		
	5.5	Comp	utation of the Derivatives of the Tracking Error	216		
		5.5.1	Derivatives with Respect to Dynamic Parameters			
			at Stage j	217		
		5.5.2	Derivatives with Respect to the Initial Values			
		_	at Stage j	221		
		5.5.3	Solution of the Perturbation Equation	224		
	5.6	Comp	putation of the Objective Function	230		
	5.7	Optim	nal PID-Regulator	233		
		5.7.1	Quadratic Cost Functions	235		
		5.7.2	The Approximate Regulator Optimization Problem	250		
6	Expected Total Cost Minimum Design of Plane Frames					
	6.1	Introd	luction	253		
	6.2	Stoch	astic Linear Programming Techniques	254		
		6.2.1	Limit (Collapse) Load Analysis of Structures			
			as a Linear Programming Problem	254		
		6.2.2	Plane Frames	257		

		6.2.3	Yield Condition in Case of $M-N$ -Interaction	263		
		0.2.4	Approximation of the Trend Condition by Using	270		
		625	Asymmetric Vield Stresses	270		
		626	Violation of the Vield Condition	275		
		627	Cost Function	217		
		0.2.7		200		
7	Stoch	astic St	tructural Optimization with Quadratic Loss Functions	289		
	7.1	Introd	uction	289		
	7.2	State a	ind Cost Functions	292		
		7.2.1	Cost Functions	296		
	7.3	Minim	ium Expected Quadratic Costs	299		
	7.4	Detern	ninistic Substitute Problems	304		
		7.4.1	Weight (Volume)-Minimization Subject			
			to Expected Cost Constraints	304		
		7.4.2	Minimum Expected Total Costs	306		
	7.5	Stocha	astic Nonlinear Programming	308		
		7.5.1	Symmetric, Non Uniform Yield Stresses	311		
		7.5.2	Non Symmetric Yield Stresses	312		
	7.6	Reliab	ility Analysis	315		
	7.7	Nume	rical Example: 12-Bar Truss	318		
		7.7.1	Numerical Results: MEC	320		
		7.7.2	Numerical Results: ECBO	322		
8	Maxi	mum E	ntropy Techniques	323		
	8.1	Uncer	tainty Functions Based on Decision Problems	323		
		8.1.1	Optimal Decisions Based on the Two-Stage			
			Hypothesis Finding (Estimation) and Decision			
			Making Procedure	323		
		8.1.2	Stability/Instability Properties	328		
	8.2	The G	eneralized Inaccuracy Function $H(\lambda, \beta)$	331		
		8.2.1	Special Loss Sets V	334		
		8.2.2	Representation of $H_{\varepsilon}(\lambda,\beta)$ and $H(\lambda,\beta)$			
			by Means of Lagrange Duality	342		
	8.3	Gener	alized Divergence and Generalized Minimum			
		Discri	mination Information	346		
		8.3.1	Generalized Divergence	346		
		8.3.2	<i>I</i> -, <i>J</i> -Projections	352		
		8.3.3	Minimum Discrimination Information	353		
Re	ferenc	es		357		
Index						