Table of Contents

Abou	it the Author	V
Intro	duction	VII
Char	oter I. Points and lines in the plane	1
I.1.	In which setting and in which plane are we working? And right away an utterly simple problem of Sylvester about the collinearity of points	1
I.2.	Another naive problem of Sylvester, this time on the geometric	6
1.3.	probabilities of four points	12
1.5. I.4.	Three configurations of the affine plane and what has happened to them:	
1.7.	Pappus, Desargues and Perles	17
I.5.	The irresistible necessity of projective geometry and the construction	.,
	of the projective plane	23
I.6.	Intermezzo: the projective line and the cross ratio	28
I.7.	Return to the projective plane: continuation and conclusion	31
I.8.	The complex case and, better still, Sylvester in the complex case:	
	Serre's conjecture	40
1.9.	Three configurations of space (of three dimensions): Reye, Möbius	
	and Schläfli	43
	Arrangements of hyperplanes	47
	^{′′} Z	48
BIDII	ography	57
Chap	pter II. Circles and spheres	61
II.1.	Introduction and Borsuk's conjecture	61
II.2.	A choice of circle configurations and a critical view of them	66
II.3.	A solitary inversion and what can be done with it	78
II.4.	How do we compose inversions? First solution: the conformal group	
	on the disk and the geometry of the hyperbolic plane	82
II.5.	Second solution: the conformal group of the sphere, first seen	
	algebraically, then geometrically, with inversions in dimension 3	
	(and three-dimensional hyperbolic geometry). Historical appearance	07
II.6.	of the first fractals	87
11.0.	Inversion in space: the sextuple and its generalization thanks to the sphere of dimension 3	91
II.7.	Higher up the ladder: the global geometry of circles and spheres	91
II.7. II.8.	Hexagonal packings of circles and conformal representation	103
	rienugenar paraings of energy and comprime representation	.05

II. XY	Circles of Apollonius	113 116 137
Chap	ter III. The sphere by itself: can we distribute points on it evenly?	141
III.2.	The metric of the sphere and spherical trigonometry	141 147 149
III.4.	The kissing number of S^2 , alias the hard problem of the thirteenth sphere	170
	Four open problems for the sphere $S^3 \dots \dots \dots \dots \dots$	172
	A problem of Banach-Ruziewicz: the uniqueness of canonical measure	174
III.7.	A conceptual approach for the kissing number in arbitrary dimension	175
III. X	YZ	177
Biblic	ography	178
Chap	ter IV. Conics and quadrics	181
IV.1. IV.2.	Motivations, a definition parachuted from the ladder, and why Before Descartes: the real Euclidean conics. Definition and some	181
	classical properties	183
IV.3.	The coming of Descartes and the birth of algebraic geometry	198
IV.4.	Real projective theory of conics; duality	200
IV.5.	Klein's philosophy comes quite naturally	205
IV.6.	Playing with two conics, necessitating once again complexification .	208
IV.7.	Complex projective conics and the space of all conics	212
IV.8.	The most beautiful theorem on conics: the Poncelet polygons	216
IV.9.	The most difficult theorem on the conics: the 3264 conics of Chasles . The quadrics	226 232
	YZ	232
	pgraphy	242
Chap	ter V. Plane curves	249
V.1.	Plain curves and the person in the street: the Jordan curve theorem, the <i>turning tangent theorem</i> and the isoperimetric inequality	249
V.2.	What is a curve? Geometric curves and kinematic curves	254
v.2. V.3.	The classification of geometric curves and the degree of mappings	
	of the circle onto itself	257
V.4.	The Jordan theorem	259
V.5.	The turning tangent theorem and global convexity	260
V.6.	Euclidean invariants: length (theorem of the peripheral boulevard) and curvature (scalar and algebraic): Winding number	263

V.7.	The algebraic curvature is a characteristic invariant: manufacture	
	of rulers, control by the curvature	269
V.8.	The four vertex theorem and its converse; an application to physics .	271
V.9.	Generalizations of the four vertex theorem: Arnold I	278
V.10.	Toward a classification of closed curves: Whitney and Arnold II	281
V.11.	Isoperimetric inequality: Steiner's attempts	295
V.12.	The isoperimetric inequality: proofs on all rungs	298
V.13.	Plane algebraic curves: generalities	305
	The cubics, their addition law and abstract elliptic curves	308
	Real and Euclidean algebraic curves	320
V.16.	Finite order geometry	328
V. XY		331
	graphy	336
Chapt	ter VI. Smooth surfaces	341
VI.1.	Which objects are involved and why? Classification of compact	
	surfaces	341
VI.2.	The intrinsic metric and the problem of the shortest path	345
VI.3.	The geodesics, the cut locus and the recalcitrant ellipsoids	347
VI.4.	An indispensable abstract concept: Riemannian surfaces	357
VI.5.	Problems of isometries: abstract surfaces versus surfaces of \mathbb{E}^3	361
VI.6.	Local shape of surfaces: the second fundamental form, total curvature	
	and mean curvature, their geometric interpretation, the <i>theorema</i>	
	egregium, the manufacture of precise balls	364
VI.7.	What is known about the total curvature (of Gauss)	373
VI.8.	What we know how to do with the mean curvature, all about soap	2.2
. 1101	bubbles and lead balls	380
VI.9.	What we don't entirely know how to do for surfaces	386
	Surfaces and genericity	391
	The isoperimetric inequality for surfaces	397
VI. XY		399
	graphy	403
DIDIIO		405
Chapt	er VII. Convexity and convex sets	409
VII.1.		409
VII.2.	Convex functions, examples and first applications	412
VII.3.	Convex functions of several variables, an important example	415
VII.4.	Examples of convex sets	417
VII.5.	Three essential operations on convex sets	420
VII.6.	Volume and area of (compacts) convex sets, classical volumes:	
	Can the volume be calculated in polynomial time?	428
VII.7.	Volume, area, diameter and symmetrizations: first proof	
	of the isoperimetric inequality and other applications	437
	er me respermente mequancy and other approximations	457

VII.8.	Volume and Minkowski addition: the Brunn-Minkowski theorem	420
	and a second proof of the isoperimetric inequality	439
VII.9.	Volume and polarity	444
VII.10.		446
VП.11.	Volumes of slices of convex sets	459
VII.12.	Sections of low dimension: the concentration phenomenon and the Dvoretsky theorem on the existence of almost spherical sections	470
VII 12	Miscellany	477
	•	
	Intermezzo: can we dispose of the isoperimetric inequality?	493
Bibliog	raphy	499
Chapte	er VIII. Polygons, polyhedra, polytopes	505
VIII.1.	Introduction	505
VIII.2.	Basic notions	506
VIII.3.	Polygons	508
VIII.4.	Polyhedra: combinatorics	513
VIII.5.	Regular Euclidean polyhedra	518
VIII.6.	Euclidean polyhedra: Cauchy rigidity and Alexandrov existence .	524
VIII.7.	Isoperimetry for Euclidean polyhedra	530
VIII.8.	Inscribability properties of Euclidean polyhedra; how to encage	
	a sphere (an egg) and the connection with packings of circles	532
VIII.9.	Polyhedra: rationality	537
VIII.10	. Polytopes ($d \ge 4$): combinatorics I $\ldots \ldots \ldots \ldots \ldots \ldots$	539
VIII.11	. Regular polytopes $(d \ge 4)$	544
	. Polytopes ($d \ge 4$): rationality, combinatorics II	550
	Brief allusions to subjects not really touched on	555
	raphy	558
Chapte	er IX. Lattices, packings and tilings in the plane	563
IX.1.	Lattices, a line in the standard lattice \mathbb{Z}^2 and the theory of continued	
	fractions, an immensity of applications	563
IX.2.	Three ways of counting the points \mathbb{Z}^2 in various domains: pick	
	and Ehrhart formulas, circle problem	567
IX.3.	Points of \mathbb{Z}^2 and of other lattices in certain convex sets: Minkowski's	
	theorem and geometric number theory	573
IX.4.	Lattices in the Euclidean plane: classification, density, Fourier analysis	
	on lattices, spectra and duality	576
IX.5.	Packing circles (disks) of the same radius, finite or infinite in number,	
	in the plane (notion of density). Other criteria	586
	Packing of squares, (flat) storage boxes, the grid (or beehive) problem	593
	Tiling the plane with a group (crystallography). Valences, earthquakes	596
	Tilings in higher dimensions	603
171.0.		005

IX.9.		
	classification of Penrose tilings	607
). Hyperbolic tilings and Riemann surfaces	617
Biblio	ography	620
Chap	oter X. Lattices and packings in higher dimensions	623
	Lattices and packings associated with dimension 3	623
	resolved	629
X.3.	A bit of risky epistemology: the four color problem and the Kepler conjecture	639
X.4.	Lattices in arbitrary dimension: examples	641
	Lattices in arbitrary dimension: density, laminations	648
	Packings in arbitrary dimension: various options for optimality	654
	Error correcting codes	659
	Duality, theta functions, spectra and isospectrality in lattices	667
	ography	673
Chap	oter XI. Geometry and dynamics I: billiards	675
XI.1.	Introduction and motivation: description of the motion of two particles	
	of equal mass on the interior of an interval	675
XI.2.	Playing billiards in a square	679
XI.3.		689
XI.4.		692
XI.5.		696
XI.6.	Results in the case of irrational polygons	705
XI.7.	Return to the case of two masses: summary	710
XI.8.		710
XI.9.		713
XI.10). General convex billiards	717
	. Billiards in higher dimensions	728
	YZ Concepts and language of dynamical systems	730
	ography	735
Chap	oter XII. Geometry and dynamics II: geodesic flow on a surface	739
XII.1	. Introduction	739
XII.2	. Geodesic flow on a surface: problems	741
XII.3	. Some examples for sensing the difficulty of the problem	743
	. Existence of a periodic trajectory	751
	. Existence of more than one, of many periodic trajectories;	
	and can we count them?	757
XII.6	. What behavior can be expected for other trajectories?	
	Ergodicity, entropies	772

XII.7. Do the mechanics determine the metric?	779
XII.8. Recapitulation and open questions	781
XII.9. Higher dimensions	781
Bibliography	782
Selected Abbreviations for Journal Titles	785
Name Index	789
Subject Index	795
Symbol Index	827