Table of Contents

About the Author V
Introduction VII
Chapter I. Points and lines in the plane 1
I.1. In which setting and in which plane are we working? And right away an utterly simple problem of Sylvester about the collinearity of points 1
I.2. Another naive problem of Sylvester, this time on the geometric probabilities of four points 6
I.3. The essence of affine geometry and the fundamental theorem 12
I.4. Three configurations of the affine plane and what has happened to them: Pappus, Desargues and Perles 17
I.5. The irresistible necessity of projective geometry and the construction of the projective plane 23
I.6. Intermezzo: the projective line and the cross ratio 28
I.7. Return to the projective plane: continuation and conclusion 31
I.8. The complex case and, better still, Sylvester in the complex case: Serre's conjecture 40
1.9. Three configurations of space (of three dimensions): Reye, Möbius and Schläfli 43
I.10. Arrangements of hyperplanes 47
I. XYZ 48
Bibliography 57
Chapter II. Circles and spheres 61
II.1. Introduction and Borsuk's conjecture 61
II.2. A choice of circle configurations and a critical view of them 66
II.3. A solitary inversion and what can be done with it 78
II.4. How do we compose inversions? First solution: the conformal group on the disk and the geometry of the hyperbolic plane 82
II.5. Second solution: the conformal group of the sphere, first seen algebraically, then geometrically, with inversions in dimension 3 (and three-dimensional hyperbolic geometry). Historical appearance of the first fractals 87
II.6. Inversion in space: the sextuple and its generalization thanks to the sphere of dimension 3 91
II.7. Higher up the ladder: the global geometry of circles and spheres 96
II.8. Hexagonal packings of circles and conformal representation 103
II.9. Circles of Apollonius 113
II. XYZ 116
Bibliography 137
Chapter III. The sphere by itself: can we distribute points on it evenly? 141
III.1. The metric of the sphere and spherical trigonometry 141
III.2. The Möbius group: applications 147
III.3. Mission impossible: to uniformly distribute points on the sphere S^{2} : ozone, electrons, enemy dictators, golf balls, virology, physics of condensed matter 149
III.4. The kissing number of S^{2}, alias the hard problem of the thirteenth sphere 170
III.5. Four open problems for the sphere S^{3} 172
III.6. A problem of Banach-Ruziewicz: the uniqueness of canonical measure 174
III.7. A conceptual approach for the kissing number in arbitrary dimension 175
III. XYZ 177
Bibliography 178
Chapter IV. Conics and quadrics 181
IV.1. Motivations, a definition parachuted from the ladder, and why 181
IV.2. Before Descartes: the real Euclidean conics. Definition and some classical properties 183
IV.3. The coming of Descartes and the birth of algebraic geometry 198
IV.4. Real projective theory of conics; duality 200
IV.5. Klein's philosophy comes quite naturally 205
IV.6. Playing with two conics, necessitating once again complexification 208
IV.7. Complex projective conics and the space of all conics 212
IV.8. The most beautiful theorem on conics: the Poncelet polygons 216
IV.9. The most difficult theorem on the conics: the 3264 conics of Chasles 226
IV.10. The quadrics 232
IV. XYZ 242
Bibliography 245
Chapter V. Plane curves 249
V.1. Plain curves and the person in the street: the Jordan curve theorem, the turning tangent theorem and the isoperimetric inequality 249
V.2. What is a curve? Geometric curves and kinematic curves 254
V.3. The classification of geometric curves and the degree of mappings of the circle onto itself 257
V.4. The Jordan theorem 259
V.5. The turning tangent theorem and global convexity 260
V.6. Euclidean invariants: length (theorem of the peripheral boulevard) and curvature (scalar and algebraic): Winding number 263
V.7. The algebraic curvature is a characteristic invariant: manufacture of rulers, control by the curvature 269
V.8. The four vertex theorem and its converse; an application to physics 271
V.9. Generalizations of the four vertex theorem: Arnold I 278
V.10. Toward a classification of closed curves: Whitney and Arnold II 281
V.11. Isoperimetric inequality: Steiner's attempts 295
V.12. The isoperimetric inequality: proofs on all rungs 298
V.13. Plane algebraic curves: generalities 305
V.14. The cubics, their addition law and abstract elliptic curves 308
V.15. Real and Euclidean algebraic curves 320
V.16. Finite order geometry 328
V. XYZ 331
Bibliography 336
Chapter VI. Smooth surfaces 341
VI.1. Which objects are involved and why? Classification of compact surfaces 341
VI.2. The intrinsic metric and the problem of the shortest path 345
VI.3. The geodesics, the cut locus and the recalcitrant ellipsoids 347
VI.4. An indispensable abstract concept: Riemannian surfaces 357
VI.5. Problems of isometries: abstract surfaces versus surfaces of \mathbb{E}^{3} 361
VI.6. Local shape of surfaces: the second fundamental form, total curvature and mean curvature, their geometric interpretation, the theorema egregium, the manufacture of precise balls 364
VI.7. What is known about the total curvature (of Gauss) 373
VI.8. What we know how to do with the mean curvature, all about soap bubbles and lead balls 380
VI.9. What we don't entirely know how to do for surfaces 386
VI.10. Surfaces and genericity 391
VI.11. The isoperimetric inequality for surfaces 397
VI. XYZ 399
Bibliography 403
Chapter VII. Convexity and convex sets 409
VII.1. History and introduction 409
VII.2. Convex functions, examples and first applications 412
VII.3. Convex functions of several variables, an important example 415
VII.4. Examples of convex sets 417
VII.5. Three essential operations on convex sets 420
VII.6. Volume and area of (compacts) convex sets, classical volumes: Can the volume be calculated in polynomial time? 428
VII.7. Volume, area, diameter and symmetrizations: first proof of the isoperimetric inequality and other applications 437
VII.8. Volume and Minkowski addition: the Brunn-Minkowski theorem and a second proof of the isoperimetric inequality 439
VII.9. Volume and polarity 444
VII.10. The appearance of convex sets, their degree of badness 446
VII.11. Volumes of slices of convex sets 459
VII.12. Sections of low dimension: the concentration phenomenon and the Dvoretsky theorem on the existence of almost spherical sections 470
VII.13. Miscellany 477
VII.14. Intermezzo: can we dispose of the isoperimetric inequality? 493
Bibliography 499
Chapter VIII. Polygons, polyhedra, polytopes 505
VIII.1. Introduction 505
VIII.2. Basic notions 506
VIII.3. Polygons 508
VIII.4. Polyhedra: combinatorics 513
VIII.5. Regular Euclidean polyhedra 518
VIII.6. Euclidean polyhedra: Cauchy rigidity and Alexandrov existence 524
VIII.7. Isoperimetry for Euclidean polyhedra 530
VIII.8. Inscribability properties of Euclidean polyhedra; how to encage a sphere (an egg) and the connection with packings of circles 532
VIII.9. Polyhedra: rationality 537
VIII.10. Polytopes ($d \geqslant 4$): combinatorics I 539
VIII.11. Regular polytopes ($d \geqslant 4$) 544
VIII.12. Polytopes ($d \geqslant 4$): rationality, combinatorics II 550
VIII.13. Brief allusions to subjects not really touched on 555
Bibliography 558
Chapter IX. Lattices, packings and tilings in the plane 563
IX.1. Lattices, a line in the standard lattice \mathbb{Z}^{2} and the theory of continued fractions, an immensity of applications 563
IX.2. Three ways of counting the points \mathbb{Z}^{2} in various domains: pick and Ehrhart formulas, circle problem 567
IX.3. Points of \mathbb{Z}^{2} and of other lattices in certain convex sets: Minkowski's theorem and geometric number theory 573
IX.4. Lattices in the Euclidean plane: classification, density, Fourier analysis on lattices, spectra and duality 576
IX.5. Packing circles (disks) of the same radius, finite or infinite in number, in the plane (notion of density). Other criteria 586
IX.6. Packing of squares, (flat) storage boxes, the grid (or beehive) problem 593
IX.7. Tiling the plane with a group (crystallography). Valences, earthquakes 596
IX.8. Tilings in higher dimensions 603
IX.9. Algorithmics and plane tilings: aperiodic tilings and decidability, classification of Penrose tilings 607
IX.10. Hyperbolic tilings and Riemann surfaces 617
Bibliography 620
Chapter X. Lattices and packings in higher dimensions 623
X.1. Lattices and packings associated with dimension 3 623
X.2. Optimal packing of balls in dimension 3, Kepler's conjecture at last resolved 629
X.3. A bit of risky epistemology: the four color problem and the Kepler conjecture 639
X.4. Lattices in arbitrary dimension: examples 641
X.5. Lattices in arbitrary dimension: density, laminations 648
X.6. Packings in arbitrary dimension: various options for optimality 654
X.7. Error correcting codes 659
X.8. Duality, theta functions, spectra and isospectrality in lattices 667
Bibliography 673
Chapter XI. Geometry and dynamics I: billiards 675
XI.1. Introduction and motivation: description of the motion of two particles of equal mass on the interior of an interval 675
XI.2. Playing billiards in a square 679
XI.3. Particles with different masses: rational and irrational polygons 689
XI.4. Results in the case of rational polygons: first rung 692
XI.5. Results in the rational case: several rungs higher on the ladder 696
XI.6. Results in the case of irrational polygons 705
XI.7. Return to the case of two masses: summary 710
XI.8. Concave billiards, hyperbolic billiards 710
XI.9. Circles and ellipses 713
XI.10. General convex billiards 717
XI.11. Billiards in higher dimensions 728
XI.XYZ Concepts and language of dynamical systems 730
Bibliography 735
Chapter XII. Geometry and dynamics II: geodesic flow on a surface 739
XII.1. Introduction 739
XII.2. Geodesic flow on a surface: problems 741
XII.3. Some examples for sensing the difficulty of the problem 743
XII.4. Existence of a periodic trajectory 751
XII.5. Existence of more than one, of many periodic trajectories; and can we count them? 757
XII.6. What behavior can be expected for other trajectories? Ergodicity, entropies 772
XII.7. Do the mechanics determine the metric? 779
XII.8. Recapitulation and open questions 781
XII.9. Higher dimensions 781
Bibliography 782
Selected Abbreviations for Journal Titles 785
Name Index 789
Subject Index 795
Symbol Index 827

