Contents

Part I: Decision Making under Risk

Chapter 1: Risk Management in Decision Making

Jie Lu, Lakhmi C. Jain, Guangquan Zhang

1	Risk Management and Decision Making	3
	Chapter Outlines	
	Summary	
	ferences and Further Readings	

Chapter 2: Computational Intelligence Techniques for Risk Management in Decision Making

İhsan Kaya, Cengiz Kahraman, Selçuk Çebi

1	Introduction	9
2	Risk Management in Decision Making	
	Computational Intelligence Techniques in Risk Management	
	3.1 The Fuzzy Set Theory	
	3.2 Neural Networks	
	3.3 Evolutionary Computation	
	3.3.1 Genetic Algorithms	
	3.3.2 Genetic Programming	
	3.3.3 Classifier Systems	
	3.3.4 Ant Colony Optimization	
	3.3.5 Particle Swarm Optimization	
	3.3.6 Hybrid Systems	
4	Literature Survey	
	Conclusions	
	ferences	

Chapter 3: Using Belief Degree Distributed Fuzzy Cognitive Maps for Energy Policy Evaluation

Lusine Mkrtchyan, Da Ruan

1	Introduction	39
2	Fuzzy Cognitive Maps	40
	Belief Degree-Distributed FCMs	

4	Application Example of BDD-FCMs Group Mapping	48
5	Comparison of FCMs	52
6	Comparison of BDD-FCMs	54
7	An Example of Comparing Experts Using BDD-FCMs	55
8	Application Examples: Energy Policy Evaluation	57
9	Real-Life Case Study: Energy Policy Evaluation	59
10	Adding Confidence Levels(CVs) for Criteria: GBDD-FCMs and Experts'	
	Comparison Considering CL Values	62
11	Conclusions	65
Re	ferences	66

Chapter 4: The Risk of Comparative Effectiveness Analysis for Decision Making Purposes

Patricia Cerrito

1	Introduction	69
2	Preprocessing Data	
	Comparison of Multiple Drugs for Best Value	
	Effectiveness Analysis Using a Threshold Value	
	4.1 NICE	
	4.2 QALY	80
	4.3 Definition of Concepts	
	4.4 Use of Text Analysis	
	4.5 Text Analysis of Open Ended Questions	
5	Discussion	
Re	eferences	86
A	ppendix: SAS Code for Preprocessing	87

Chapter 5: Portfolio Risk Management Modelling by Bi-level Optimization

Todor Stoilov, Krasimira Stoilova

1	Introduction	
	Taxonomy of the Risk	
	Portfolio Optimization Problem	
	Bi-level Hierarchical Optimization Problems	
5	Solution of Portfolio Bi-level Problem	
6	Assessment of the Bi-level Calculations	
7	Conclusion	109
Re	eferences	

Chapter 6: Possibilistic Decision-Making Models for Portfolio Section Problems *Peijun Guo*

1	Introduction	111
2	Markowitz's Portfolio Selection Model	112
3	Upper and Lower Possibility Distributions	114
	Identification of Upper and Lower Possibility Distributions	

5	Possibilistic Decision-Making Models for Portfolio Selecting	118
6	Numerical Example	119
7	Conclusions	121
Re	ferences	122
Ap	pendix	123
	•	

Chapter 7: Searching Musical Representative Phrases Using Decision Making Based on Fuzzy Similarities

Emerson Castañeda, Luis Garmendia, Matilde Santos

127 128 129 130
129
130
131
131
131
132
132
135
138
140
148
148
•

Chapter 8: A Risk-Based Multi-criteria Decision Support System for Sustainable Development in the Textile Supply Chain

Besoa Rabenasolo, Xianyi Zeng

1	Introduction	151
2	Formalization of the Proposed Decision Support System	154
	2.1 Structure of the Evaluation Procedure	154
	2.2 List of Evaluation Indicators	155
3	Computing the Overall Criterion from the Multiple Evaluation Indicators	157
	3.1 Existing Methods for Multicriteria Decision Making	157
	3.2 Proposed Procedure for Aggregating Evaluation Indicators	158
4	Determination of the Weights	161
5	An Illustrative Example	163
6	Conclusion	169
Re	eferences	169

Chapter 9: Fuzzy Decision System for Safety on Roads

Matilde Santos, Victoria López

1	Introduction	171
2	Modeling Reliability and Risk	172
3	Description of the Fuzzy System That Evaluates the Risk on Road	176
	3.1 Environment Fuzzy Subsystem	
	3.2 Driver Fuzzy Subsystem	178
	3.3 Car Fuzzy Subsystem	180
4	Risk Fuzzy System Implementation	182
5	Conclusions	186
Re	eferences	186

Part II: Risk Management in Business Decision Making

Chapter 10: A New Latex Price Forecasting Model to Reduce the Risk of Rubber Overproduction in Thailand

Jitian Xiao, Panida Subsorn

1	Introduction	191
2	The Public Agricultural Rubber Industry in Thailand	193
	The Rubber Price Forecasting Model and Analysis Procedure	
	3.1 The Training Techniques	
	3.1.1 Non-NN Training Technique	
	3.1.2 NN Training Technique	
	3.2 Components of the Forecasting Model	
	3.3 Data Analysis Procedures	
4	Experimental Results	
	4.1 One Year Rubber Latex Price Forecasts	
	4.2 Four Month Rubber Latex Price Forecasts	
5	Conclusions	
	eferences	

Chapter 11: An Agent-Based Modeling for Pandemic Influenza in Egypt

Khaled M. Khalil, M. Abdel-Aziz, Taymour T. Nazmy, Abdel-Badeeh M. Salem

1	Introduction	205
	Epidemiological Modeling Approaches	
	Multi-agent Related Models	
	3.1 Main Risk-Based Decision Making Activity	
4	Proposed Model	
	4.1 Proposed Extension to SIR Model	
	4.2 Proposed Multi-agent Model	
5	Proposed Model Validation	
	Pandemic Control Strategies	

7	Experiments and Analysis of Results	215
	Conclusion	
Re	eferences	218

Chapter 12: Supply Chain Risk Management: Resilience and Business Continuity

Mauricio F. Blos, Hui Ming Wee, Wen-Hsiung Yang

1	Intr	oductio	n to Risk in Supply Chain	
2	Res	ilience	in Supply Chain	
	2.1	Resilie	ence Management System Requirements	223
		2.1.1	Best Practices of a Resilient Organization	226
	2.2	Busine	ss Continuity in Supply Chain	
		2.2.1	Supply Chain Continuity Framework	229
		2.2.2	Business Assessment Process	
3	Con	clusion	and Future Research Proposal	
Re	efere	nces	-	

Chapter 13: A Fuzzy Decision System for an Autonomous Car Parking

Carlos Martín Sánchez, Matilde Santos Peñas, Luis Garmendia Salvador

1	Introduction	237
2	Analysis and Comparison of Different Approaches to the Parking Problem	239
3	Problem Description	240
	3.1 The Car Model	
	3.2 Modeling the Scenario	242
4	The Car Parking Fuzzy Decision System	244
	4.1 Car Parking Fuzzy Variables	246
	4.2 Car Parking Fuzzy Rules	247
	4.2.1 Backward Strategy	248
	4.2.2 Forward Approaching the Bay	249
	4.2.3 Forward Moving Away from the Rear Obstacle	250
	4.2.4 Strategy Selector	251
5	Results of the Car Parking Fuzzy Decision System with Different Fuzzy	
	Operators	252
	5.1 Discussion of the Decisions Based on the Fuzzy Logic Used for the	
	Car Application	253
6	Conclusions	256
Re	ferences	256

Chapter 14: Risk-Based Decision Making Framework for Investment in the Real Estate Industry

Nur Atiqah Rochin Demong, Jie Lu

1	Introduction	259
2	Risk-Based Decision Making Concepts	261

•

	2.1	Definition of Risk and Risk-Based Decision Making	. 261
	2.2	Types of Risk	. 262
		2.2.1 Systematic Risk	
		2.2.2 Unsystematic or Idiosyncratic Risk	
	2.3	Risk Analysis	. 263
		2.3.1 Risk Identification	
		2.3.2 Risk Estimation	. 264
		2.3.3 Risk Assessment	. 264
3	Risk	-Based Decision Making Process	. 265
	3.1	Main Risk-Based Decision Making Activity	. 265
	3.2	Types of Risk-Based Decision Making Process	. 267
		3.2.1 Static Risk-Based Decision Making Process	. 267
		3.2.2 Dynamic Risk-Based Decision Making Process	. 268
	3.3	Decision Support Technology for Risk-Based Decision Making Process	. 269
4		Sources and Risk Factors in the Real Estate Industry	
	4.1	Financial Risk	. 270
	4.2	Economic Risk	. 271
	4.3	Scheduled Risk	. 272
	4.4	Policy Risk	. 272
	4.5	Technical Risk and Others	. 272
	4.6	Risk Factors Based on Stages of Real Estate Investment	. 273
5		-Based Decision Making Techniques for Real Estate Project	
	Inve	estment	. 274
	5.1	Quantitative RBDM Technique	. 274
		5.1.1 Beta	
		5.1.2 Projection Pursuit Model Based on Particle Swarm	
		Optimization (PSO)	. 275
		5.1.3 Condition Value-at-Risk (CVaR)	. 275
		5.1.4 Maximal Overlap Discreet Wavelet Transform (MODWT)	. 275
		5.1.5 Markowitz's Portfolio Analysis and Regression Analysis	. 275
		5.1.6 Statistical Stepwise Regression Analysis and Neural Network	
		Sensitivity Analysis	. 275
	5.2	Qualitative RBDM Technique	
		5.2.1 Fuzzy Comprehensive Valuation Method	. 276
		5.2.2 Variable Precision Rough Set (VPRS)	
	5.3	Hybrid RBDM Technique	
		5.3.1 Radial Basis Function Neural Network	
		5.3.2 Support Vector Machine	
		5.3.3 Analytic Hierarchy Process	
		5.3.4 Real Option Method	
6		es and Challenges of Risk-Based Decision Making	
7		nmary	
R	efere	nces	. 280

Chapter 15: Risk Management in Logistics

Hui Ming Wee, Mauricio F. Blos, Wen-Hsiung Yang

1		oduction		
2	Scop	pe	286	
	2.1	Logistics Processes	286	
		2.1.1 Physical Flow	287	
		2.1.2 Information Flow	288	
	2.2	Risk Management	288	
		2.2.1 Mitigation Strategy		
		2.2.2 Contingency Strategy		
3	Risk	Management Process in Logistic		
		Risks Identification		
		3.1.1 Sources or Drivers of Risk		
		3.1.2 Vulnerabilities	295	
	3.2	Risk Analysis and Evaluation	296	
		3.2.1 Assessment Techniques		
		3.2.2 Risk Evaluation.		
	3.3	Risk Treatment-Mitigation Strategy	297	
		3.3.1 Preference		
		3.3.2 Trade-Off	298	
		3.3.3 Tailored Mitigation Strategies	299	
	3.4	Implementation		
		3.4.1 Governance		
		3.4.2 Control and Monitoring		
		3.4.3 Continuous Improvement		
4	Perf	Formance Evaluation		
5	Con	clusions	303	
Re	References			

Part III: Risk Assessment and Response Systems

Chapter 16: Natural Disaster Risk Assessment Using Information Diffusion and Geographical Information System

Zhang Jiquan, Liu Xingpeng, Tong Zhijun

2 Basic Theory and Method of Information Diffusion	311
2.1 Information Diffusion	311
2.2 Information Matrix	313
3 The Application of GIS in Risk Assessment Natural Disaster	314
3.1 Components and Functions of GIS	
3.2 Applications of GIS	314
4 Case Analysis	316
4.1 The Study Area and Statistical Analysis of Grassland Fire Disasters	316
5 Conclusions	329
References	329

Chapter 17: Applications of Social Systems Modeling to Political Risk Management

Gnana K. Bharathy, Barry Silverman

1	Introduction: Issues with Risk Assessment and Motivation		
2	Social Systems Modeling Framework	335	
	2.1 Considerations for a Social Systems Model	335	
	2.2 Introduction to Framework	338	
	2.3 Country Modeling Case	343	
	2.4 Modeling Methodology	344	
3	Social System Model Contributing to Risk Framework	349	
	3.1 Risk Conception and Hazard Identification	349	
	3.2 Risk Assessment	355	
	3.3 Treatment of Risk		
4	Conclusions		
Re	References		

Chapter 18: An Integrated Intelligent Cooperative Model for Water-Related Risk Management and Resource Scheduling

Yong-Sheng Ding, Xiao Liang, Li-Jun Cheng, Wei Wang, Rong-Fang Li

Introduction	373
The Integrated Model for Risk Management of Disasters	374
2.2 The AI-Based Integrated Intelligent Cooperative Model for Risk	
Management of Disasters	375
The Intelligent Classification of Regional Drought Severity Based on	
Double-Layered Radial Base Function Neural Networks	377
3.1 Radial Base Function Neural Network	378
3.2 The Design of the Intelligent Classification Model Using	
Double-Layered RBFNN	380
3.2.1 Design Principle	380
3.2.2 Parameters and Data Preparation for Modeling	382
The Intelligent Optimization of Multiple Reservoirs Operation Using	
Improved Particle Swarm Optimization	382
4.1 Particle Swarm Optimization	383
4.1.2 Standard PSO Algorithm	384
4.2 An Improved PSO Algorithm for Long Term Optimal Hydraulic	
4.2.1 An Improved PSO Algorithm	386
4.2.3 Constraint Handing	391
	 2.2 The AI-Based Integrated Intelligent Cooperative Model for Risk Management of Disasters

5	Sim	ulation	and Results	
	5.1	Simul	ation for the Drought Evaluation	
	5.2	Simul	ation of the Water Resource Scheduling of Reservoirs	396
			Curve Fitting	
			Simulation Results	
6	Con	clusio	าร	
Re	eferei	nces		400

Chapter 19: Determining the Significance of Assessment Criteria for Risk Analysis in Business Associations

Omar Hussain, Khresna Bayu Sangka, Farookh Khadeer Hussain

1	Introduction	403
2	Significance of Assessment Criteria during Risk Analysis	405
	2.1 Related Work	406
	2.2 Problem Definition	. 406
3	Analytic Hierarchy Process to determine the Significance of the Assessment	
	Criteria	. 407
4	Analytic Network Process to Ascertain the Significance of the Assessment	
	Criteria	412
5	Conclusion	415
Re	ferences	. 415

Chapter 20: Artificial Immune Systems Metaphor for Agent Based Modeling of Crisis Response Operations

Khaled M. Khalil, M. Abdel-Aziz, Taymour T. Nazmy, Abdel-Badeeh M. Salem

1	Introduction	417
2	The Proposed Response Model	418
	2.1 Proposed Hierarchical Architecture for Multi-agent Response Model	418
	2.2 AIS Operational Architecture for Multi-agent Model	419
3	Crisis Response to Pandemic Influenza in Egypt	423
4	Experiments	425
5	Conclusions	426
Re	ferences	427

Chapter 21: Mobile-Based Emergency Response System Using Ontology-Supported Information Extraction

Khaled Amailef, Jie Lu

1	Introduction	429
2	Emergency Response System within m-Government Dimensions	430
	2.1 The MERS Conceptual Framework	431
	2.2 Risk and Risk Management System	432
3	An Information Extraction and Text Aggregation	433
	3.1 Information Extraction	433
	3.2 Information Aggregation Definitions	434

	3.3 Named Entity Recognition	434		
	3.4 Maximum Entropy Model			
4	System Architecture for SMS Text Extraction and Aggregation	436		
5	Ontology-Based Representation for Unstructured SMS Text	440		
	An Illustrated Example	441		
7	System Implementation	443		
	7.1 Text Collection	444		
	7.2 Results			
8	Conclusion	447		
Re	eferences	447		
A	Author Index			
Editors				

•

.