Contents

1 Introduction								
2	The Role of Fragmentation on the Formation							
	of Homomeric Protein Complexes							
	2.1	uction	5					
	2.2	meric Protein Complexes	6					
		2.2.1	Homomeric Membrane Proteins	8				
		2.2.2	Interactions Responsible for the Formation					
			of Quaternary Structures	9				
		2.2.3	Diffusion Coefficient of Membrane Proteins	10				
	2.3 The First Passage Time Processes: An Estimation							
		of the	Aggregation Time Scale	11				
		2.3.1	The First Passage Time on a Sphere	12				
	2.4	The St	moluchowski Coagulation Equation	13				
		2.4.1	System with Fragmentation	15				
	2.5 The Efficiency of Formation of Protein Complexes							
		2.5.1	Steady State Size Distribution with					
			Irreversible Dynamics	18				
		2.5.2	Role of the Fragmentation	20				
	2.6	Discus	ssion	28				
	References 2							
3	Colle	ective R	esponse of Self-Organised Clusters					
	of Mechanosensitive Channels							
	3.1	3.1 Introduction						
	3.2	Mechanosensitive Channels.						
		3.2.1	Prokaryotic Mechanosensitive Channels	33				
		3.2.2	Eukaryotic Mechanosensitive Channels	35				

xi

	3.3	Experimental Techniques Employed in the Study				
		of Mech	anosensitive Channels	36		
		3.3.1 N	Measurement of the Channel Gating and Sensitivity			
		t	o Tension	37		
		3.3.2 \$	Spatial Localization of Mechanosensitive Channels	38		
	3.4	Evidence	Evidences of Clustering of Mechanosensitive Channels			
	3.5	Individual Channel Gating				
	3.6	Interactions Between Membrane Inclusions				
		3.6.1 I	Direct Protein–Protein Interactions	41		
		3.6.2 N	Membrane-Mediated Protein–Protein Interactions	42		
	3.7	Model o	of the Cooperative Gating of the			
		Mechan	osensitive Channels	46		
	3.8	Dynamics of Agglomeration				
		3.8.1 Т	The Lattice Gas Phase Diagram	49		
		3.8.2 0	Conditions for Mechanosensitive			
		(Channel Agglomeration	51		
	3.9	Dynamics of Gating				
		3.9.1 E	Equilibrium Properties	54		
		3.9.2 I	Dynamics of Escape From the Metastable State	59		
		3.9.3 1	The Transition From Closed to Open Conformations	59		
		3.9.4 1	The Transition From Open to Closed Conformations	61		
		3.9.5 0	Classical Nucleation Theory and the Delay			
		C	of the Channel Response	62		
	3.10	Discussi	on	64		
	Refer	eferences				
4	Asser	Assembly and Fragmentation of Tat Pores				
	4.1	1 Introduction				
	4.2	Tat Protein Transport System				
	4.3	4.3 The Theory of TatA Assembly Process.				
		4.3.1 T	The Assembly of a Single Ring.	72		
	4.4	Assembly of Multiple Rings				
		4.4.1 T	Franslocation of Only One Type of Protein	74		
		4.4.2 T	Franslocation of Protein of Distinct Sizes.	74		
		4.4.3 0	Condition for the Existence of a Steady State	76		
	4.5	Discussi	on	77		
	Refer	2ferences				
	~			-		
5	Conc	iusion		19		