
https://www.pearson.de/9780133430370

Praise for SysML Distilled

“In keeping with the outstanding tradition of Addison-Wesley’s techni-
cal publications, Lenny Delligatti’s SysML Distilled does not disappoint.
Lenny has done a masterful job of capturing the spirit of OMG SysML
as a practical, standards-based modeling language to help systems engi-
neers address growing system complexity. This book is loaded with
matter-of-fact insights, starting with basic MBSE concepts to distin-
guishing the subtle differences between use cases and scenarios to illu-
mination on namespaces and SysML packages, and even speaks to some
of the more esoteric SysML semantics such as token flows.”

— Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory

“The power of a modeling language, such as SysML, is that it facilitates
communication not only within systems engineering but across disci-
plines and across the development life cycle. Many languages have the
potential to increase communication, but without an effective guide,
they can fall short of that objective. In SysML Distilled, Lenny Delligatti
combines just the right amount of technology with a common-sense
approach to utilizing SysML toward achieving that communication.
Having worked in systems and software engineering across many do-
mains for the last 30 years, and having taught computer languages,
UML, and SysML to many organizations and within the college setting,
I find Lenny’s book an invaluable resource. He presents the concepts
clearly and provides useful and pragmatic examples to get you off the
ground quickly and enables you to be an effective modeler.”

— Thomas W. Fargnoli, Lead Member of the
Engineering Staff, Lockheed Martin

“This book provides an excellent introduction to SysML. Lenny Delli-
gatti’s explanations are concise and easy to understand; the examples
well thought out and interesting.”

— Susanne Sherba, Senior Lecturer, Department of
Computer Science, University of Denver

“Lenny hits the thin line between a reference book for SysML to look
up elements and an entertaining book that could be read in its entirety
to learn the language. A great book in the tradition of the famous UML
Distilled.”

— Tim Weilkiens, CEO, oose

https://www.pearson.de/9780133430370

3.9 Value Types 55

•฀ You cannot define a generalization between an actor and a
block.

•฀ An actor cannot have parts; that is, it cannot appear at the com-
posite end of a composite association. (We always regard an
actor as a “black box.”)

3.9 Value Types

Like a block, a value type is an element of definition—one that generally
defines a type of quantity. I say “generally” because there are two value
types in SysML—Boolean and String—that arguably are not quantities.

You can use a value type in many places throughout your model.
Most often, it appears as the type of a value property, which is a kind
of structural feature of blocks. (Section 3.4.1.3, “Value Properties,” has
more details.) But that’s not the only place where value types make an
appearance; they’re actually ubiquitous in system models. They can
also appear as the types of the following:

•฀ Atomic flow ports on blocks and actors

•฀ Flow properties in flow specifications

•฀ Constraint parameters in constraint blocks

•฀ Item flows and item properties on connectors

•฀ Return types of operations

•฀ Parameters of operations and receptions

•฀ Object nodes, pins, and activity parameters within activities

There are three kinds of value types—primitive, structured, and
enumerated—that you typically define in your system model. A primi-
tive value type has no internal structure (it doesn’t own any value
properties). Its notation is a rectangle with the stereotype «valueType»
preceding the name.

SysML defines four primitive value types: String, Boolean, Integer,
and Real. You can, of course, define your own primitive value types as
specializations (subtypes) of these four. For example, Figure 3.25 shows
three value types (°, V, and ° C) that are subtypes of Real.

As its name implies, a structured value type has an internal struc-
ture—generally two or more value properties. As with a primitive
value type, the notation for a structured value type is a rectangle with

https://www.pearson.de/9780133430370

 Block Definition Diagrams56

the stereotype «valueType» preceding the name. SysML defines one
structured value type: Complex. Its structure consists of two value prop-
erties—realPart and imaginaryPart—that are both of type Real. One
structured value type may, in turn, be the type of a value property
within another structured value type. In this way, you can create arbi-
trarily complex systems of value types.

An enumerated value type—colloquially called an enumeration—
simply defines a set of literals (legal values). If a parameter of an opera-
tion (or some other kind of element shown in the earlier bulleted list) is
typed by an enumeration, then the value it holds at any moment must
be one of the literals in that enumeration. The BDD in Figure 3.25 shows
an enumeration named CommandKind, which defines two literals:
Stored and Real-Time. I could use this enumeration, for example, to type
an input parameter named kind in an operation named buildCommand.
When a client calls this operation (within a running system), the only
legal values it can pass are Stored and Real-Time.

I mentioned earlier that value types can be related to one another
by using generalizations. A value type hierarchy can be arbitrarily
deep, and generalizations—as you may recall—are transitive. For ex-

Figure 3.25 Value types

https://www.pearson.de/9780133430370

3.10 Constraint Blocks 57

ample, Figure 3.25 conveys that the value types VDC and VAC are (in-
directly) subtypes of Real. The principle of substitutability applies here
just as it does in the case of generalizations between blocks: Values of
type VDC and VAC will be accepted wherever their supertypes (V and
Real) are required. These supertypes are abstractions. And the principle
of designing to an abstraction—and its consequent extensibility—also
applies to this practice of creating a value type hierarchy. This is a
widely used and powerful modeling practice.

3.10 Constraint Blocks

Like a block, a constraint block is an element of definition—one that
defines a Boolean constraint expression (an expression that must eval-
uate to either true or false). Most often, the constraint expression you
define in a constraint block is an equation or an inequality: a mathemat-
ical relationship that you use to constrain value properties of blocks.
You would do this for two reasons:

•฀ To specify assertions about valid system values in an opera-
tional system

•฀ To perform engineering analyses during the design stage of the
life cycle

The variables in a constraint expression are called constraint pa-
rameters. Generally, they represent quantities, and so they’re typed
most often by value types. For example, Figure 3.26 shows a constraint
block named Transfer Orbit Size, which defines a constraint expression
that contains three constraint parameters: semimajorAxis, initialOrbit-
Radius, and finalOrbitRadius. These three constraint parameters are
typed by the value type km.

Constraint parameters receive their values from the value prop-
erties they’re bound to—that is, the value properties that are being
constrained. At any given moment, those values either satisfy the con-
straint expression, or they don’t; the system is either operating nomi-
nally, or it isn’t. Note, however, that a BDD by itself can’t convey which
constraint parameters and value properties are bound to one another.
You would express this piece of information on a parametric diagram.
(I discuss this in detail in Chapter 9.)

The notation for a constraint block on a BDD is a rectangle with the
stereotype «constraint» preceding the name. The constraint expression

https://www.pearson.de/9780133430370

 Block Definition Diagrams58

always appears between curly brackets ({}) in the constraints compart-
ment. The constraint parameters in the constraint expression are listed
individually in the parameters compartment.

You sometimes build a more complex constraint block from a set of
simpler constraint blocks. You would do this to create a more complex
mathematical relationship from simpler equations and inequalities.
The more complex constraint block can display its constituent parts as
a list of constraint properties in the constraints compartment. Recall
from Section 3.4.1.4 that a constraint property has a name and a type in
the format name : type. The type, as mentioned earlier, must be the name
of a constraint block.

For example, Figure 3.26 shows that the constraint block Hohmann
Transfer is composed of two constraint properties—ttof and tos—which

Figure 3.26 Relationships between constraint blocks

https://www.pearson.de/9780133430370

3.11 Comments 59

represent usages of the constraint blocks Transfer Time of Flight and
Transfer Orbit Size, respectively. This model conveys that Hohmann
Transfer defines a constraint expression that is a composite of two sim-
pler constraint expressions—in effect, defining a more complex math-
ematical relationship.

Note, though, what this BDD doesn’t (and can’t) convey: where
those two simpler constraint expressions are specifically connected to
each other to create the composite constraint expression. A parametric
diagram would convey this additional piece of information (more on
this in Chapter 9).

As an alternative to the constraints compartment notation, you can
use composite associations to convey that one constraint block is com-
posed of other, simpler ones (as shown in Figure 3.26). Note that the
role names shown on the part ends of the two composite associations
correspond to the names of the constraint properties in the Hohmann
Transfer constraint block. These are equivalent notations. You use com-
posite associations when you need to expose the details of the simpler
constraint blocks; in contrast, you use the constraints compartment no-
tation to hide those details when they’re not the focus of the diagram.

3.11 Comments

SysML has a lot of rules (and they all exist to serve the very useful pur-
pose of giving your design unambiguous meaning from one reader to
the next). However, you sometimes need to express information on a
diagram in an unconstrained way as a block of text. You can do this
with a comment.

A comment is, in fact, a model element. It consists of a single attri-
bute: a string of text called the body. You can convey any information
you need to in the body of a comment, and you can optionally attach a
comment to other elements on a diagram to provide additional infor-
mation about them. You can use comments on any of the nine kinds of
SysML diagrams.

The notation for a comment is commonly referred to as a note sym-
bol: a rectangle whose upper-right corner is bent. You use a dashed line
to attach a comment to other elements (as shown at the bottom of the
BDD in Figure 3.27). If you need to, you can attach a comment to sev-
eral model elements simultaneously by using a separate dashed line
for each one.

https://www.pearson.de/9780133430370

 Block Definition Diagrams60

Modelers sometimes put freestanding comments with hyperlinks
on a diagram to enable readers to quickly navigate to a related diagram
in the model (or to an external document). An example of this is shown
in the upper-left corner of the BDD in Figure 3.27. To be clear, though,
this capability is a function of the modeling tool you use; not all tools
do this. And SysML itself says nothing about this capability.

SysML defines some specialized kinds of comments: rationale,
problem, and diagram description. These appear as a note symbol with
the respective stereotype preceding the body of the comment. Fig-
ure 3.27 shows an example of a diagram description comment in the
upper-right corner of the BDD. Modelers often use rationale comments
in conjunction with requirements relationships and allocations. I dis-
cuss these topics in detail in Chapters 11 and 12.

Figure 3.27 Comments on a BDD

https://www.pearson.de/9780133430370

